Diffusion Mechanisms in Two-Phase Intermetallic Titanium Aluminide Alloys

F. Appel

Institute for Materials Research GKSS Research Centre Geesthacht D-21502 Geesthacht, Germany

TMS, San Francisco , Febr., 15, 2005 Dislocation Multiplication by Diffusion Assisted Bardeen-Herring Climb Sources

TEM in-situ heating

Ti-48Al-2Cr (at.%)

Titanium Aluminide Alloys

γ

45 48

60

at.% Al

Intermetallic compounds 1600 $\alpha_2(Ti_3AI) + \gamma(TiAI)$ β 1400 emperature (°C) Problems: α 1200 Insufficient structural stability α_2 1000 strain ageing phenomena $\alpha_2 +$ 800 30 50 40 • occur at $(0.3 - 0.5)T_m$ Ti

Diffusion assisted phenomena associated with non-equilibrium phase constitution and chemical disorder

Degradation of Lamellar Microstructures

- Reduction of interface energy
- Recrystallization

Phase
 transformation

Solid State Transformations

► $\alpha \rightarrow \alpha + \gamma$ transformation is sluggish non-equilibrium phase composition with excess α_2 phase

provides driving force for phase transformation and dynamic recrystallization

Phase Transformation During High-Temperature Creep

Phase Transformation During High-Temperature Creep

Diffusion Mechanism to Attain Phase Equilibria

high density of Ti_{Al} antisite defects

V_{Ti}+Ti_{Al}

V_{AI}

<u> 1 </u>

 V_{Ti} + Ti_{AI}

Herzig et al .1998

Phase Transformation and Recrystallization during Long-Term Creep

```
Ti-48Al-2Cr (at. %)
T=700 °C,
σ=110MPa,
t=13400 h
ε=0.46 %
```


Phase Transformation and Recrystallization during Long-Term Creep

```
Ti-48Al-2Cr (at. %)
T=700 °C,
σ=110 Mpa,
t=13400 h
ε=0.46 %
```


Structural features of lamellar interfaces in an engineering alloy

Ti-46.5Al-4(Cr, Nb, Ta, B):

Tilt boundary between α_2 -lamellae

Climb of interfacial dislocations during in situ heating inside the TEM

Ti-48Al-2Cr (at. %)

Phase Transformation during Long-Term Creep, Ti-48Al-2Cr (at. %),T=700 °C, σ=110Mpa,t=13,400 h,ε=0.46 %

Static Strain Ageing

56 s

Classical yield point return technique stress increments $\Delta \sigma_a$ upon reloading

associated with degree of dislocation locking

Static Strain Ageing

Kinetics: Strain age yield point becomes saturated

Estimation of Activation Ernergy

Arrhenius plot:

Time necessary to achieve a certain degree of completeness of dislocation pinning combined with related temperature.

Activation energy: $Q_a = 0.58 - 0.77 \ eV$

not consistent with classical diffusion mechanisms

self diffusion energy Q_{sd} =2.6 eV

pipe diffusion $Q_p = 0.5 Q_{sd}$

Static Strain Ageing: Effect of Alloy Composition

Strain ageing phenomena most pronounced in Ti-rich Alloys

Locking Mechanism

Ti_{Al}-vacancy complex produce asymmetric distortion

various crystallographically equivalent orientations

reorientation in the dislocation stress field leads to locking

Ti \bigcirc Al \bigcirc Ti_{Al} antisite atom \square vacancy

Diffusion Asisted by Antisite Defects

Vacancies propagate by two nearest-neighbour jumps, without disturbing the long-range order

Energetics:

(Herzig and Mishin, 2000) $\blacktriangleright Q_{ASB}(Ti_{Al})=0.712 \ eV$ $Q_{ASB}(Al_{Ti})=1.323 eV$

Strain ageing: $Q_a = 0.58-0.77 \ eV$ $V_{Ti} + Ti_{AI} -1 \rightarrow V_{AI}$

 $V_{Ti} + Ti_{AI}$

Conclusions

- Diffusion plays a major and complex role in the mechanical behaviour of intermetallic titanium aluminide alloys.
- Off-stochiometric deviations are compensated by the formation of antisite defects on the respective sub-lattice.
- This chemical disorder effectively supports diffusion at moderately high temperatures of (0.3-0.5)T_m.
- The operation of this mechanism leads to significant structural changes upon long-term service and to dislocation locking by the formation of ordered defect atmospheres.